
Simulink® HDL Coder™
Release Notes

How to Contact MathWorks

www.mathworks.com Web
comp.soft-sys.matlab Newsgroup
www.mathworks.com/contact_TS.html Technical Support

suggest@mathworks.com Product enhancement suggestions
bugs@mathworks.com Bug reports
doc@mathworks.com Documentation error reports
service@mathworks.com Order status, license renewals, passcodes
info@mathworks.com Sales, pricing, and general information

508-647-7000 (Phone)

508-647-7001 (Fax)

The MathWorks, Inc.
3 Apple Hill Drive
Natick, MA 01760-2098
For contact information about worldwide offices, see the MathWorks Web site.

Simulink® HDL Coder™ Release Notes
© COPYRIGHT 2007–2011 by The MathWorks, Inc.
The software described in this document is furnished under a license agreement. The software may be used
or copied only under the terms of the license agreement. No part of this manual may be photocopied or
reproduced in any form without prior written consent from The MathWorks, Inc.

FEDERAL ACQUISITION: This provision applies to all acquisitions of the Program and Documentation
by, for, or through the federal government of the United States. By accepting delivery of the Program
or Documentation, the government hereby agrees that this software or documentation qualifies as
commercial computer software or commercial computer software documentation as such terms are used
or defined in FAR 12.212, DFARS Part 227.72, and DFARS 252.227-7014. Accordingly, the terms and
conditions of this Agreement and only those rights specified in this Agreement, shall pertain to and govern
the use, modification, reproduction, release, performance, display, and disclosure of the Program and
Documentation by the federal government (or other entity acquiring for or through the federal government)
and shall supersede any conflicting contractual terms or conditions. If this License fails to meet the
government’s needs or is inconsistent in any respect with federal procurement law, the government agrees
to return the Program and Documentation, unused, to The MathWorks, Inc.

Trademarks

MATLAB and Simulink are registered trademarks of The MathWorks, Inc. See
www.mathworks.com/trademarks for a list of additional trademarks. Other product or brand
names may be trademarks or registered trademarks of their respective holders.

Patents

MathWorks products are protected by one or more U.S. patents. Please see
www.mathworks.com/patents for more information.

http://www.mathworks.com/trademarks
http://www.mathworks.com/patents

Contents

Summary by Version . 1

Version 2.2 (R2011b) Simulink® HDL Coder Software . . 4

Version 2.1 (R2011a) Simulink® HDL Coder Software . . 8

Version 2.0 (R2010b) Simulink® HDL Coder Software . . 18

Version 1.7 (R2010a) Simulink® HDL Coder Software . . 33

Version 1.6 (R2009b) Simulink® HDL Coder Software . . 41

Version 1.5 (R2009a) Simulink® HDL Coder Software . . 52

Compatibility Summary for Simulink® HDL Coder
Software . 64

iii

iv Contents

Simulink® HDL Coder™ Release Notes

Summary by Version
This table provides quick access to what’s new in each version. For
clarification, see “Using Release Notes” on page 1.

Version (Release) New Features and
Changes

Version
Compatibility
Considerations

Fixed Bugs and
Known Problems

Latest Version
V2.2 (R2011b)

Yes
Details

None Bug Reports

V2.1 (R2011a) Yes
Details

None Bug Reports

V2.0 (R2010b) Yes
Details

Yes
Summary

Bug Reports

V1.7 (R2010a) Yes
Details

Yes
Summary

Bug Reports

V1.6 (R2009b) Yes
Details

Yes
Summary

None

V1.5 (R2009a) Yes
Details

Yes
Summary

None

Using Release Notes
Use release notes when upgrading to a newer version to learn about:

• New features

• Changes

• Potential impact on your existing files and practices

1

http://www.mathworks.com/support/bugreports/?product=HD&release=R2011b
http://www.mathworks.com/support/bugreports/?product=HD&release=R2011a
http://www.mathworks.com/support/bugreports/?product=HD&release=R2010b
http://www.mathworks.com/support/bugreports/?product=HD&release=R2010a

Simulink® HDL Coder™ Release Notes

Review the release notes for other MathWorks® products required for this
product (for example, MATLAB® or Simulink®). Determine if enhancements,
bugs, or compatibility considerations in other products impact you.

If you are upgrading from a software version other than the most recent one,
review the current release notes and all interim versions. For example, when
you upgrade from V1.0 to V1.2, review the release notes for V1.1 and V1.2.

What Is in the Release Notes

New Features and Changes

• New functionality

• Changes to existing functionality

Version Compatibility Considerations

When a new feature or change introduces a reported incompatibility between
versions, the Compatibility Considerations subsection explains the
impact.

Compatibility issues reported after the product release appear under Bug
Reports at the MathWorks Web site. Bug fixes can sometimes result
in incompatibilities, so review the fixed bugs in Bug Reports for any
compatibility impact.

Fixed Bugs and Known Problems

MathWorks offers a user-searchable Bug Reports database so you can view
Bug Reports. The development team updates this database at release time
and as more information becomes available. Bug Reports include provisions
for any known workarounds or file replacements. Information is available
for bugs existing in or fixed in Release 14SP2 or later. Information is not
available for all bugs in earlier releases.

Access Bug Reports using your MathWorks Account.

2

http://www.mathworks.com/support/bugreports/
http://www.mathworks.com/support/bugreports/
http://www.mathworks.com/support/bugreports/
http://www.mathworks.com/support/bugreports/

Summary by Version

Documentation on the MathWorks Web Site
Related documentation is available on mathworks.com for the latest release
and for previous releases:

• Latest product documentation

• Archived documentation

3

http://www.mathworks.com/help/
http://www.mathworks.com/help/doc-archives.html

Simulink® HDL Coder™ Release Notes

Version 2.2 (R2011b) Simulink HDL Coder Software
This table summarizes what’s new in Version 2.2 (R2011b):

New Features and Changes Version Compatibility
Considerations

Fixed Bugs and Known
Problems

Yes
Details below

None Bug Reports

New features and changes introduced in this version are:

• “Black Box Implementation Enables Specification of Library for Loading
VHDL Component” on page 4

• “Option to Minimize Intermediate Signals in HDL Code” on page 4

• “Option to Exclude Time/Date Information in HDL File Header” on page 6

Black Box Implementation Enables Specification of
Library for Loading VHDL Component
For black box implementations of subsystems, you can now specify the library
from which to load a VHDL component. The following example specifies
mylib as the library:

hdlset_param(gcb, 'VHDLComponentLibrary', 'mylib');

This enhancement enables you to specify a VHDL component library other
than work.

For more information, see:

• “Generating a Black Box Interface for a Subsystem”

• “Customizing the Generated Interface”

Option to Minimize Intermediate Signals in HDL Code
R2011b provides an option to minimize intermediate signals:

4

http://www.mathworks.com/support/bugreports/?product=HD&release=R2011b

Version 2.2 (R2011b) Simulink® HDL Coder™ Software

By removing intermediate signals and omitting declarations for those signals,
you can enable better code coverage. For new models, this option is off by
default. When you open existing models, this option is also off to preserve
backward compatibility.

For more information, see MinimizeIntermediateSignals in the Simulink®

HDL Coder™ documentation.

5

Simulink® HDL Coder™ Release Notes

Option to Exclude Time/Date Information in HDL File
Header
R2011b provides an option to exclude time/date information in the generated
HDL file header:

By excluding the time/date information in the file header, you can more
easily determine if two HDL files contain identical code. You can also avoid
extraneous revisions of the same file when checking in HDL files to a source
code management (SCM) system. For new models, this option is on by default.

6

Version 2.2 (R2011b) Simulink® HDL Coder™ Software

When you open existing models, this option is also on to preserve backward
compatibility.

For more information, see DateComment in the Simulink HDL Coder
documentation.

7

Simulink® HDL Coder™ Release Notes

Version 2.1 (R2011a) Simulink HDL Coder Software
This table summarizes what’s new in Version 2.1 (R2011a):

New Features and Changes Version Compatibility
Considerations

Fixed Bugs and Known
Problems

Yes
Details below

None Bug Reports

New features and changes introduced in this version are:

• “Synchronous Multiclock Code Generation” on page 8

• “GUI Support for Scalarize Vector Ports Option for VHDL” on page 9

• “GUI Support for Balancing Delays” on page 11

• “Delay Balancing Support for Filter and High-Level Blockset Blocks ” on
page 12

• “Enhanced CORDIC Algorithm Support” on page 12

• “Enhanced Retiming Features” on page 12

• “Enhanced Resource Sharing” on page 13

• “Enhanced Resource Utilization Report” on page 13

• “Enhanced Synthesis Script Generation” on page 13

• “Generic Parameter Passing to Subsystems With BlackBox Interface” on
page 15

• “HDL Workflow Advisor Integrated FPGA Development Workflow” on
page 16

• “Viterbi Decoder Enhancements” on page 16

• “Support for From and Goto Blocks at Any Level in Model” on page 17

Synchronous Multiclock Code Generation
Release R2011a now supports synchronous multiple clock code generation.
You can specify multiple clocks in one of the following ways:

8

http://www.mathworks.com/support/bugreports/?product=HD&release=R2011a

Version 2.1 (R2011a) Simulink® HDL Coder™ Software

• Use the new property ClockInputs with the function makehdl and specify
value as ’Multiple’.

• In the Global Settings Clock settings pane, select ’Multiple’ for the Clock
inputs field.

When using single clock mode, HDL code generated from multirate models
employs a single master clock that corresponds to the base rate of the DUT.
When using multiple clock mode, HDL code generated from multirate models
employs one clock input for each rate in the DUT. The number of timing
controllers generated in multiple clock mode depends on the design in the
DUT.

The new property supports values ’Single’ and ’Multiple’, and defaults to
’Single’. In this mode, the tool’s behavior is unchanged from the current
behavior.

GUI Support for Scalarize Vector Ports Option for
VHDL
The Scalarize Vector Ports option provides GUI support for the
ScalarizePorts property. Scalarize Vector Ports is located in the
Advanced pane of the Global Settings section of the Configuration
Parameters dialog, as shown in the following figure.

9

Simulink® HDL Coder™ Release Notes

-

Scalarize Vector Ports lets you control how the coder generates VHDL code
for vector ports. When you select Scalarize Vector Ports, the coder flattens
each vector port into a structure of scalar ports.

This option is enabled when the selected Language for code generation is
VDHL.

See ScalarizePorts in the Simulink HDL Coder documentation for details.

10

Version 2.1 (R2011a) Simulink® HDL Coder™ Software

GUI Support for Balancing Delays
The Balance Delays option provides GUI support for the BalanceDelays
property. Balance Delays is located in the Advanced pane of the Global
Settings section of the Configuration Parameters dialog, as shown in the
following figure.

When you select Balance Delays, if the coder detects the introduction of
new delays along one path, it ensures that matching delays are inserted
on all other paths. See “Delay Balancing” in the Simulink HDL Coder
documentation for details.

11

Simulink® HDL Coder™ Release Notes

Delay Balancing Support for Filter and High-Level
Blockset Blocks
Added delay balancing support for filter and high-level blockset blocks. This
addition removes a limitation in this feature from an earlier release. See
“Delay Balancing” in the Simulink HDL Coder documentation.

Enhanced CORDIC Algorithm Support
Simulink HDL Coder now adds HDL code generation support for:

• The cos+jsin (complex exponential) function of the Trigonometric
Function block, using the CORDIC approximation

• The CORDIC approximation method of the Magnitude-Angle to Complex
block

• Use of unsigned data types with CORDIC approximation methods for sin
and cos functions

• The cordicrotate function of the MATLAB Function block

See also “Trigonometric Function Block Requirements and Restrictions” in
the Simulink HDL Coder documentation.

Enhanced Retiming Features
R2011a enhancements to Distributed Pipelining allow retiming to be applied
across a subsystem hierarchy.

• New global parameter HierarchicalDistPipelining, which is set to off by
default.

• SLHC applies retiming hierarchically down until DistributedPipelining is
turned off for a given subsystem.

• If HierarchicalDistPipelining is turned off, it resorts to the old functionality,
i.e., distribution only happens within a subsystem.

• If you turn on the OptimizationReport property, the tool adopts an
enhanced reporting mechanism to provide the following:

- If ’HierarchicalDistPipelining’ is on, it shows the distributed pipelining
report, region-wise.

12

Version 2.1 (R2011a) Simulink® HDL Coder™ Software

- If the distributed pipelining fails, it gives some information that might
help you correct the failure mode.

Enhanced Resource Sharing
R2011a resource sharing is enhanced as follows:

• Previously, atomic subsystems could be used in data-dependent sharing
only if they did not contain any state elements. The removal of this
restriction allows sharing in designs like IIR filters

• Previously, the coder did not allow blocks contained in any feedback loop to
be shared. In R2011a, you can share blocks within a feedback loop, provided
that there are sufficient delays (Unit Delays or Integer Delays) available
within the feedback loop to enable semantics-preserving resource sharing.

To construct a sharable feedback loop, connect a Unit Delay or Integer
Delay to the output of all Gain and Product blocks within the loop.

See also “Streaming, Resource Sharing, and Delay Balancing” in the Simulink
HDL Coder documentation.

Enhanced Resource Utilization Report
The Resource Utilization Report now provides information on additional
resources:

• Multiplexers (MUXes), including number and bit width of MUXes

• RAMs. including number of RAMs and their depth and bit width.

Enhanced Synthesis Script Generation
R2011a lets you generate synthesis scripts specifically designed for your
choice of one of the following synthesis tools:

• Xilinx® ISE

• Mentor Graphics® Precision

• Altera® Quartus II

• Synopsys®Synplify Pro®

13

Simulink® HDL Coder™ Release Notes

You can select a synthesis tool in either of the following ways:

• In the EDA Tool Scripts pane of the Configuration Parameters dialog box,
pick a synthesis tool from the Choose synthesis tool pulldown menu.

• In a makehdl command, set the value of the new 'HDLSynthTool' property.

When you select a synthesis tool, the coder:

• Enables synthesis script generation.

• Enters a file name postfix (specific to the chosen synthesis tool) into the
Synthesis file postfix field.

• Enters strings (specific to the chosen synthesis tool) into the initialization,
command, and termination fields.

The following figure shows the Synthesis script pane, with default option
values entered for the Mentor Graphics Precision tool.

14

Version 2.1 (R2011a) Simulink® HDL Coder™ Software

See also “Synthesis Script Options” in the Simulink HDL Coder
documentation.

Generic Parameter Passing to Subsystems With
BlackBox Interface
The BlackBox implementation for subsystems now includes the
'GenericList' implementation parameter. Using 'GenericList', you can
pass a list of parameter/value pairs (with optional data type specification) in
string format to any subsystem having a BlackBox implementation.

15

Simulink® HDL Coder™ Release Notes

You specify 'GenericList' as a cell array of string data. Each element
of the cell array is another cell array, of the form {'Name', 'Value',
'Type'}.'Type' is optional. If you omit 'Type', 'integer' is passed as the
data type.

The following example specifies two generic parameters, named 'Width'
and 'CntToNum', to be passed to the BlackBox interface generated for the
current subsystem. The data type for 'Width' is specified. The data type for
'CntToNum' is not specified.

hdlset_param(gcb, 'GenericList', '{{''Width'', ''8'', ''integer''}, {''C

HDL Workflow Advisor Integrated FPGA Development
Workflow
In R2011a, the HDL Workflow Advisor supports an FPGA development
workflow that integrates the following tasks:

• Set Target Device and Synthesis Tool: Selection of a target FPGA
development board and supporting synthesis tool. A large number of
development boards are now supported.

• Set Target Interface: Specification of I/O interface for the target board

• Download to Target, Program Target Device: Synthesis of generated
HDL code and programming of the target board

• Generate xPC Interface: Generate xPC Target interface subsystem,
which automatically creates an interface between the xPC Target™ system
and Speedgoat FPGA boards.

For more information, see “Automated Workflows for Specific Target Devices
and Synthesis Tools”.

Viterbi Decoder Enhancements
The Viterbi decoder now supports RAM-based traceback for HDL code
generation.

16

Version 2.1 (R2011a) Simulink® HDL Coder™ Software

Support for From and Goto Blocks at Any Level in
Model
In previous releases, the coder supported From and Goto blocks only if the
connected blocks were located at the same subsystem level.

In R2011a, the coder supports use of From and Goto blocks at any level in the
model hierarchy inside of the DUT.

17

Simulink® HDL Coder™ Release Notes

Version 2.0 (R2010b) Simulink HDL Coder Software
This table summarizes what’s new in Version 2.0 (R2010b):

New Features and Changes Version Compatibility
Considerations

Fixed Bugs and Known
Problems

Yes
Details below

Yes—Details labeled
as Compatibility
Considerations, below.
See also Summary.

Bug Reports

New features and changes introduced in this version are:

• “HDL Parameters Now Saved to Model, Eliminating Need For Control
Files” on page 19

• “Additional Simulink Blocks Supported for HDL Code Generation” on
page 22

• “Resource Streaming and Sharing Optimizations Conserve Chip Area”
on page 23

• “Delay Balancing” on page 24

• “New Timing Controller Naming Convention Avoids Name Clashes” on
page 25

• “Scalarized Ports Option for VHDL” on page 25

• “Pipelining Improvements for Filter Blocks” on page 26

• “Reusable Code Generation for Atomic Subsystems” on page 27

• “Resource Utilization and and Optimization Reports” on page 28

• “Limitation on Generated Verilog Black Box Interfaces Removed” on page
31

• “Model Blocks Within Enabled and Triggered Subsystems Supported” on
page 32

• “InitializeBlockRAM Property Controls Generation of Initial Signal Values
for RAMs” on page 32

18

http://www.mathworks.com/support/bugreports/?product=HD&release=R2010b

Version 2.0 (R2010b) Simulink® HDL Coder™ Software

• “AddClockEnablePort Implementation Parameter for RAM Blocks
Removed” on page 32

• “Do Not Use Floor Rounding Mode for Signed Integer Division” on page 32

HDL Parameters Now Saved to Model, Eliminating
Need For Control Files
In R2010b, the coder saves all non-default HDL-related model settings, block
implementation selections and implementation parameter settings to the
model file. This eliminates the need to maintain a separate control file.
Because the coder saves only the non-default parameter settings, the loading
and saving of models is more efficient.

As of release R2010b, the coder does not support the attachment of a control
file to a new model. If you have existing models with attached control files,
you should convert them to the current format and remove control file linkage.
The “Compatibility Considerations” on page 22 section of this release note
describes this simple process.

In R2010b, the coder provides both GUI enhancements and utility functions
that let you select block implementations, set HDL-related model and block
parameters, and perform other functions that previously required control
files. “Setting HDL Block Properties in the GUI” on page 19 and “Setting
and Getting HDL Block and Model Properties Programatically” on page 21
summarize these enhancements.

Setting HDL Block Properties in the GUI
R2010b lets you select block implementations and set implementation
parameters using the new HDL Properties dialog box. This dialog box is
available via the HDL Coder block context menu. The following figure shows
this menu when accessed from a Sum of Elements block.

19

Simulink® HDL Coder™ Release Notes

When you select HDL Block Properties, the HDL Properties dialog box
for the block opens. The following figure shows the dialog box for a Sum of
Elements block. The Implementation section of the dialog box lets you select
one of three block implementations. The Implementation Parameters
section of the dialog box and lets you view and set implementation
parameters. For this block, all implementations support the InputPipeline
and OutputPipeline parameters.

20

Version 2.0 (R2010b) Simulink® HDL Coder™ Software

For further information, see “Selecting Block Implementations and Setting
Implementation Parameters with the HDL Block Properties Dialog Box” in
the Simulink HDL Coder documentation.

Setting and Getting HDL Block and Model Properties
Programatically
The following new functions provided by R2010b let you report or set
HDL-related property values at the block and model levels:

• hdlset_param: Set HDL-related parameters at the model or block level.

• hdlget_param: Return the value of specified HDL block-level parameter (or
of all parameters) for a specified block.

• hdldispblkparams: Display HDL-related block parameters that have
nondefault values, or all HDL-related block parameters for a specified
block.

• hdldispmdlparams: Display HDL-related model parameters that have
nondefault values, or all HDL-related model parameters.

• hdlapplycontrolfile: Apply settings from a control file to a model or
subsystem.

See also “Specifying Block Implementations and Parameters for HDL Code
Generation” in the Simulink HDL Coder documentation:

21

Simulink® HDL Coder™ Release Notes

Compatibility Considerations
For backward compatibility, the coder continues to support code generation for
existing models that have attached control files. The recommended practice is
to convert such models to the current format and remove control file linkage.

To convert a model that has an attached control file:

1 Open the model. When the coder opens a model that has an attached
control file, it loads and sets parameters as specified in the control file, and
clears the control file linkage from the model. During this process, the
coder displays the following messages:

Found HDL control file attached to the model 'test_model' ...
Loading control file 'test_model_control' ...
Successfully loaded control file 'test_model_control.m' ...
Please consider saving the model to make changes permanent ...
Detaching the HDL control file from the model...

2 Save the model. The model now preserves all non-default settings. The
next time you open the model, the coder will not display any control file
status messages.

Additional Simulink Blocks Supported for HDL Code
Generation
The coder now supports the blocks listed in the following table for HDL code
generation.

“Summary of Block Implementations” in the Simulink HDL Coder
documentation gives a complete listing of blocks that the coder supports for
HDL code generation.

Block Notes

hdldemolib/HDL FIFO This block implements a first-in
first-out (FIFO) register. See “HDL
FIFO”

Communications System Toolbox™/Channel
Coding/Convolutional /Convolutional Encoder

See “Convolutional Encoder Block
Requirements and Restrictions”

22

Version 2.0 (R2010b) Simulink® HDL Coder™ Software

Block Notes

Communications System Toolbox/Digital Baseband
Modulation/AM:

• Rectangular QAM Demodulator Baseband

• Rectangular QAM Modulator Baseband

See “Rectangular QAM Demodulator
Baseband Block Requirements and
Restrictions”

See “Rectangular QAM Modulator
Baseband Block Requirements and
Restrictions”

Communications System
Toolbox/Interleaving/Convolutional:

• Convolutional Deinterleaver

• Convolutional Interleaver

Release 2010b adds RAM-based
implementations for these blocks.
See “Convolutional Interleaver and
Deinterleaver Block Requirements
and Restrictions”

Communications System
Toolbox/Interleaving/Convolutional:

• General Multiplexed Deinterleaver

• General Multiplexed Interleaver

See “General Multiplexed
Interleaver and Deinterleaver Block
Requirements and Restrictions”

Resource Streaming and Sharing Optimizations
Conserve Chip Area
R2010b introduces two related techniques that help you to conserve hardware
resources and chip area:

Streaming is an optimization in which the coder transforms a vector data
path to a scalar data path (or to several smaller-sized vector data paths) that
executes at a faster rate. The generated code saves chip area by multiplexing
the data over a smaller number of hardware resources. In effect, streaming
allows some number of computations to share a hardware resource.

23

Simulink® HDL Coder™ Release Notes

Resource sharing is an optimization in which the coder identifies multiple
functionally equivalent resources and shares a single resource among them to
perform their operations. This technique can realize a substantial reduction
in chip area. For example, the generated code may use only one multiplier to
perform the operations of several identically-configured multipliers from the
original model. The coder achieves this by multiplexing the shared data over
the shared resource.

The coder applies streaming and sharing at the subsystem level. You
request streaming or sharing by specifying the subsystem HDL parameters
StreamingFactor or SharingFactor. You can set these properties in the
HDL Properties dialog for a subsystem, as shown in the following figure.

See “Streaming, Resource Sharing, and Delay Balancing” in the Simulink
HDL Coder documentation for details.

Delay Balancing
In R2010b, the coder supports delay balancing, an option that corrects
problems that occur when optimizations introduce delays along one path in
a model, but equivalent delays are not introduced on other, parallel signal

24

Version 2.0 (R2010b) Simulink® HDL Coder™ Software

paths. When you enable delay balancing, if the coder detects introduction of
new delays along one path, it ensures that matching delays are inserted on all
other paths. When delay balancing is enabled, the coder guarantees that the
generated model is functionally equivalent to the original model.

See “Delay Balancing” in the Simulink HDL Coder documentation for details.

New Timing Controller Naming Convention Avoids
Name Clashes
The coder generates a timing controller code file if required by the design, for
example when generating code for a multirate model.

In previous releases the timing controller file was always named
Timing_Controller.vhd or Timing_Controller.v. This naming convention
could cause name clashes between timing controllers generated in separate
makehdl runs from models within a Model Reference block.

Release 2010b avoids such naming clashes by using a new naming convention
for timing controllers, as follows:

• The coder supports a new string property, TimingControllerPostfix. The
default value for TimingControllerPostfix is '_tc'.

• The timing controller name derives from the name of the
subsystem that is selected for code generation (the DUT) as
DUTname+TimingControllerPostfix.

For example, if the name of the DUT is 'symmetric_fir', the default name
for the associated timing controller would be 'symmetric_fir_tc'.

See also TimingControllerPostfix in the Simulink HDL Coder documentation.

Scalarized Ports Option for VHDL
The new ScalarizePorts property for makehdl lets you control how the coder
generates VHDL code for vector ports.

When you set ScalarizePorts to'on', the coder flattens each vector port into
a structure of scalar ports.

25

Simulink® HDL Coder™ Release Notes

You can use ScalarizePorts to generate non-conficting port definitions
ScalarizePorts if you encounter typing or naming conflicts between vector
ports when interfacing two or more generated VHDL code modules.

See ScalarizePorts in the Simulink HDL Coder documentation for details.

Pipelining Improvements for Filter Blocks
In R2010b, three new implementation parameters for filter blocks provide
improved pipelining support. The new implementation parameters are:

• AddPipelineRegisters (Default: off): Inserts a pipeline register between
stages of computation in a filter.

• MultiplierInputPipeline (Default: 0): Generates a specified number of
pipeline stages at multiplier inputs for FIR filter structures.

• MultiplierOutputPipeline (Default: 0): Generates a specified number of
pipeline stages at multiplier outputs for FIR filter structures.

The following figure shows these parameters, set to their default values, in
the HDL Block Properties dialog box for a Digital Filter block.

26

Version 2.0 (R2010b) Simulink® HDL Coder™ Software

See “Pipelining Implementation Parameters for Filter Blocks”in the Simulink
HDL Coder documentation for details.

Reusable Code Generation for Atomic Subsystems
The new HandleAtomicSubsystem property for makehdl lets you generate
reusable code for atomic subsystems that are identical. By generating
reusable code, you can often eliminate the creation of numerous redundant
source code files generated for identical subsystems. HandleAtomicSubsystem
is enabled by default.

See “Generating Reusable Code for Atomic Subsystems” in the Simulink HDL
Coder documentation for details.

27

Simulink® HDL Coder™ Release Notes

Resource Utilization and and Optimization Reports
The coder now supports generation of two additional report sections to the
HDL Code Generation report. You can add these sections to your reports by
selecting the options highlighted in the following figure.

When you select Generate resource utilization report, the coder adds
a Resource Utilization Report section. The Resource Utilization Report
summarizes multipliers, adders/subtractors, and registers consumed by the
device under test (DUT). It also includes a detailed report on resources used
by each subsystem. The detailed report includes (wherever possible) links
back to corresponding blocks in your model.

28

Version 2.0 (R2010b) Simulink® HDL Coder™ Software

When you select Generate optimization report, the coder adds an
Optimization Report section, with two subsections:

29

Simulink® HDL Coder™ Release Notes

Distributed Pipelining: this subsection shows details of subsystem-level
distributed pipelining (if any subsystems have the DistributedPipelining
option enabled). Details include comparative listings of registers and flip-flops
before and after applying the distributed pipelining transform.

Streaming and Sharing: this subsection shows both summary and detailed
information about all subsystems for which sharing or stream is requested.

The following figure shows the distributed pipelining subsection of a typical
Optimization Report.

30

Version 2.0 (R2010b) Simulink® HDL Coder™ Software

See “Creating and Using Code Generation Reports” in the Simulink HDL
Coder documentation for further information.

Limitation on Generated Verilog Black Box Interfaces
Removed
In previous releases, where Verilog was specified as the target language, the
coder supported only scalar ports for code generation with the Subsystem

31

Simulink® HDL Coder™ Release Notes

black box implementation (BlackBox). Release R2010b removes this
restriction.

The restriction still applies to some other block types. See “Limitation on
Generated Verilog Interfaces” in the Simulink HDL Coder documentation for
further information.

Model Blocks Within Enabled and Triggered
Subsystems Supported
The coder now supports HDL code generation for Enabled Subsystem and
Triggered Subsystem blocks that contain Model blocks.

InitializeBlockRAM Property Controls Generation of
Initial Signal Values for RAMs
The new InitializeBlockRAM property for the makehdl function lets you
enable or suppress generation of initial signal values for RAM blocks.

See also InitializeBlockRAM in the Simulink HDL Coder documentation.

AddClockEnablePort Implementation Parameter for
RAM Blocks Removed
The AddClockEnablePort implementation parameter for the Dual Port RAM
and Single Port RAM blocks was deprecated in Release 2009b.

In R2010b, the coder no longer supports AddClockEnablePort for RAM blocks.

Do Not Use Floor Rounding Mode for Signed Integer
Division
The coder now displays an error message at code generation time if it
encounters use of 'floor' rounding mode for signed integer division . The
HDL division operator does not support 'floor' rounding mode.

To avoid this error, use 'fix' mode for signed integer division operations, or
else change the signed integer division operations to unsigned integer division.

32

Version 1.7 (R2010a) Simulink® HDL Coder™ Software

Version 1.7 (R2010a) Simulink HDL Coder Software
This table summarizes what’s new in Version 1.7 (R2010a):

New Features and Changes Version Compatibility
Considerations

Fixed Bugs and Known
Problems

Yes
Details below

Yes—Details labeled
as Compatibility
Considerations, below.
See also Summary.

None

New features and changes introduced in this version are:

• “Simplified Syntax for Specification of Block Implementations in Control
Files” on page 34

• “HDL Workflow Advisor” on page 35

• “Additional Simulink Blocks Supported for HDL Code Generation” on
page 37

• “CORDIC Algorithm Supported for Trigonometric Functions (sin, cos,
sincos)” on page 38

• “Option to Minimize Generation of Clock Enables ” on page 38

• “VHDLArchitectureName Property Supports Specification of Architecture
Name” on page 38

• “VHDLLibraryName Property Supports Specification of Target Library ”
on page 38

• “Output Pipelining Now Supported for Subsystems” on page 39

• “Distributed Pipelining Now Supported for Subsystems” on page 39

• “CSD and Factored CSD Optimizations for Constant Multiplications” on
page 39

• “Enhanced Gain Block Support” on page 39

• “FIR Decimation Filter Supports Distributed Arithmetic Architecture”
on page 40

33

Simulink® HDL Coder™ Release Notes

• “Serial, Partly Serial and Cascade Serial Architectures Supported for FIR
Filter Implementations” on page 40

• “InstancePostfix Property Allows Specification of Extension to Postfix
String” on page 40

Simplified Syntax for Specification of Block
Implementations in Control Files
In R2010a, the coder supports a simplified syntax for specifying block
implementations in a control file. The new syntax lets you specify a block
implementation using simple keywords, instead of package.class notation.
The new implementation keywords are generic, rather than block-specific.
This approach lets you use the same keyword to specify implementation
types such as Tree, Cascade, or Linear for all blocks that support such
implementations. For example, the following control file specifies that the
coder uses a cascade implementation for all Sum blocks and all Product
blocks in the model.

function cfg = controlFile
cfg = hdlnewcontrol(mfilename);

cfg.forEach('*',...
'built-in/Sum', {},...
'Cascade', {});

cfg.forEach('*',...
'built-in/Product', {},...
'Cascade', {});

To specify the default implementation for any block, simply use the keyword
'default', as in the following example.

function cfg = controlFile
cfg = hdlnewcontrol(mfilename);

cfg.forEach('./Subsystem/MinMax', ...
'built-in/MinMax', {}, ...

34

Version 1.7 (R2010a) Simulink® HDL Coder™ Software

'default');

Refer to the Simulink HDL Coder documentation for a complete listing of
supported blocks and their implementations.

Compatibility Considerations
In previous releases, control files specified block implementations using
package.class syntax. For example, the following control file specifies the
cascade implementation for Sum blocks, using package.class syntax.

function cfg = controlFile
cfg = hdlnewcontrol(mfilename);

cfg.forEach('*',...
'built-in/Sum', {},...
'hdldefaults.SumCascadeHDLEmission', {});

The coder continues to support control files that use package.class syntax.
However, we strongly recommend that you convert existing control files to
the new syntax. To convert an existing control file:

• Open a model that is linked to the control file.

• Open the Configuration Parameters dialog box and select the HDL Coder
pane.

• Click Generate to generate HDL code for the model. The code generation
process updates in-memory information that will be written to your
updated control file.

• In the Code generation control file subpane, click Save. This overwrites
the existing control file. The updated control file will use the new syntax.

HDL Workflow Advisor
The HDL Workflow Advisor is a GUI tool that supports all stages of the FPGA
design process, including the following:

35

Simulink® HDL Coder™ Release Notes

• Checking the Simulink model for HDL code generation compatibility

• HDL code and test bench generation

• Synthesis and timing analysis through integration with third-party
synthesis tools (r2010a supports Xilinx ISE)

• Back annotation of the Simulink model with critical path and other
information obtained during synthesis.

The following figure shows the top-level HDL Workflow Advisor window.

36

Version 1.7 (R2010a) Simulink® HDL Coder™ Software

See “Using the HDL Workflow Advisor” for further information.

Additional Simulink Blocks Supported for HDL Code
Generation
The coder now supports the blocks listed in the following table for HDL code
generation.

Block Notes

simulink/Additional Math & Discrete/Additional
Discrete/Unit Delay Enabled Resettable

simulink/Additional Math & Discrete/Additional
Discrete/Unit Delay Resettable

simulink/Math Operations/Trigonometric Function See also “CORDIC Algorithm
Supported for Trigonometric
Functions (sin, cos, sincos)” on page
38.

Signal Processing Blockset/Signal Operations/Repeat

Communications System Toolbox/Digital Baseband
Modulation/PM:

• PSK Modulators (BPSK,M-PSK,QPSK)

• PSK Demodulators (BPSK,M-PSK,QPSK)

Communications System
Toolbox/Interleaving/Convolutional:

• Convolutional Interleaver

• Convolutional Deinterleaver

“Convolutional Interleaver and
Deinterleaver Block Requirements
and Restrictions”

Communications System Toolbox/Error Detection and
Correction/Convolutional/Viterbi Decoder

“Viterbi Decoder Block Requirements
and Restrictions”

“Summary of Block Implementations” in the Simulink HDL Coder
documentation gives a complete listing of blocks that the coder supports for
HDL code generation.

37

Simulink® HDL Coder™ Release Notes

CORDIC Algorithm Supported for Trigonometric
Functions (sin, cos, sincos)
The Simulink Trigonometric Function block now supports the CORDIC
algorithm for the sin,cos, and sincos functions.

Simulink HDL Coder HDL Coder now supports HDL code generation for
the Trigonometric Function block for the sin,cos, and sincos functions. To
generate HDL code for one these functions, select the Trigonometric Function
block, you must set the Approximation method parameter to CORDIC.

See also “Trigonometric Function Block Requirements and Restrictions” in
the Simulink HDL Coder documentation.

Option to Minimize Generation of Clock Enables
The new Minimize clock enables options lets you suppress generation of
clock enable logic for single-rate designs, wherever possible. If your target
device does not have registers with clock enables, you may want to consider
selecting this option.

You can also use the command-line property MinimizeClockEnables to
suppress generation of clock enable logic .

See also “Minimize clock enables” in the Simulink HDL Coder documentation.

VHDLArchitectureName Property Supports
Specification of Architecture Name
The new VHDLArchitectureName property lets you specify the architecture
name for generated HDL code. The default architecture name is 'rtl'.

VHDLLibraryName Property Supports Specification
of Target Library
The new VHDLLibraryName property lets you specify the name of the target
library for generated HDL code. The default target library name is 'work'.

38

Version 1.7 (R2010a) Simulink® HDL Coder™ Software

Output Pipelining Now Supported for Subsystems
The coder now supports the OutputPipeline property for subsystems.

For detailed information, see “OutputPipeline” in the Simulink HDL
Coder documentation.“DistributedPipelining” in the Simulink HDL Coder
documentation.

Distributed Pipelining Now Supported for Subsystems
In the previous release, the coder supported the DistributedPipelining
property for Embedded MATLAB® Function blocks or Stateflow® charts
within a subsystem.. In R2010a, the coder also supports this property for
any subsystem.

For detailed information, see “DistributedPipelining” in the Simulink HDL
Coder documentation.

CSD and Factored CSD Optimizations for Constant
Multiplications
You can now specify Canonic Signed Digit (CSD) and Factored Canonic Signed
Digit (FCSD) techniques to optimize multiplication operations involving
constants.

The ConstMultiplierOptimization implementation supports CSD and
FCSD optimizations for the following blocks:

• Gain

• Stateflow chart

• Truth Table

• Embedded MATLAB

See also “ConstMultiplierOptimization”.

Enhanced Gain Block Support
The coder now supports the following for HDL code generation for the Gain
block:

39

Simulink® HDL Coder™ Release Notes

• Use of Matrix (k*u) (u vector) mode for the Gain parameter.

• If you specify the implementation parameter
ConstMultiplierOptimization, 'auto') for the Gain block, the coder
automatically selects CSD or FCSD implementations based on the number
of required adders.

FIR Decimation Filter Supports Distributed Arithmetic
Architecture
The code now supports distributed arithmetic (DA) filter implementations
for the dspmlti4/FIR Decimation block. See “Distributed Arithmetic
Implementation Parameters for Digital Filter Blocks” in the Simulink HDL
Coder documentation for details.

Serial, Partly Serial and Cascade Serial Architectures
Supported for FIR Filter Implementations
The coder now supports serial, partly serial and cascade serial architectures
for the following blocks:

• dsparch4/Digital Filter (FIR structures only)

• simulink/Discrete/Discrete FIR Filter

• dspmlti4/FIR Decimation

You can specify serial architectures using the SerialPartition and
ReuseAccum implementation parameters. See“Speed vs. Area Optimizations
for FIR Filter Implementations” for further information.]

InstancePostfix Property Allows Specification of
Extension to Postfix String
In R2010a, the coder supports the InstancePostfix. InstancePostfix lets
you specify a string appended after component instance names in generated
code. The default value for InstancePostfix is ''(no postfix added).

40

Version 1.6 (R2009b) Simulink® HDL Coder™ Software

Version 1.6 (R2009b) Simulink HDL Coder Software
This table summarizes what’s new in Version 1.6 (R2009b):

New Features and Changes Version Compatibility
Considerations

Fixed Bugs and Known
Problems

Yes
Details below

Yes—Details labeled
as Compatibility
Considerations, below.
See also Summary.

None

New features and changes introduced in this version are:

• “Triggered Subsystems Support for HDL Code Generation” on page 42

• “Stateflow Events Support for HDL Code Generation” on page 42

• “Support for Global Oversampling Clock” on page 42

• “Test Bench GUI Reorganized” on page 43

• “MATLAB Editor Supports VHDL and Verilog Syntax Highlighting” on
page 44

• “Hyperlinked Requirements Comments Included in HTML Code
Generation Reports” on page 44

• “HTML Code Generation Report from Root-Level Model Supported” on
page 44

• “Generation of Simulink Model for Cosimulation of Generated HDL Code”
on page 45

• “Additional Simulink Blocks Supported for HDL Code Generation” on
page 45

• “New hdldemolib Block Supports Streaming FFT” on page 46

• “Algebraic Loops Disallowed for HDL Code Generation” on page 46

• “DUT Argument Required for checkhdl and makehdl Commands” on page
46

41

Simulink® HDL Coder™ Release Notes

• “AddClockEnablePort Implementation Parameter for RAM Blocks
Deprecated” on page 47

• “Additional Lookup Table Blocks Supported” on page 48

• “Discrete FIR Filter Supports Distributed Arithmetic Architecture” on
page 48

• “Generation of Multicycle Path Constraint Information” on page 49

• “Biquad Filter and Digital Filter Blocks Support Complex Input Data and
Coefficients” on page 50

• “Support for Adding or Removing HDL Configuration Component” on
page 50

Triggered Subsystems Support for HDL Code
Generation
The coder now supports HDL code generation for triggered subsystems. See
“Code Generation for Enabled and Triggered Subsystems” in the Simulink
HDL Coder documentation for further information.

Stateflow Events Support for HDL Code Generation
The coder now supports a single input event and unlimited output events
in Stateflow charts. for further information, see “Using Input and Output
Events” in the Simulink HDL Coder documentation.

Support for Global Oversampling Clock
You can now generate global clock logic that allows you to integrate your DUT
into a larger system easily, without using Upsample or Downsample blocks.

To generate global clock logic, you specify an oversampling factor. The
oversampling factor expresses the desired rate of the global oversampling
clock as a multiple of the base rate of the model. When you specify an
oversampling factor, the coder generates the global oversampling clock. Then,
it derives the required timing signals from the clock signal. Generation of the
global oversampling clock affects only generated HDL code. The clock does
not affect the simulation behavior of your model.

42

Version 1.6 (R2009b) Simulink® HDL Coder™ Software

You can specify the desired factor as the Oversampling factor option in the
Clock settings section of the Global Settings pane of the Configuration
Parameters dialog. The following figure shows the option. Alternatively, you
can set the command-line property 'Oversampling'.

See “Generating a Global Oversampling Clock” in the Simulink HDL Coder
documentation for further information.

Test Bench GUI Reorganized
The new Testbench generation output section of the GUI contains three
new options:

• HDL test bench: Selecting this option enables generation of an HDL
test bench, and also enables all options in the Configuration section of
the Test Bench pane.

43

Simulink® HDL Coder™ Release Notes

• Cosimulation blocks: Selecting this option enables generation of a model
containing HDL Cosimulation block for use in testing the DUT. Selecting
this option also enables all options in the Configuration section of the
Test Bench pane.

• Cosimulation model for use with: This option enables generation of a
model containing an HDL Cosimulation block for use in testing with a
selected cosimulation tool. Selecting this option also enables all options in
the Configuration section of the Test Bench pane.

To configure test bench options and generate test bench code, select one or
more of the options of the Testbench generation output section. If you
deselect all three options of the Testbench generation output section, the
coder disables all options in the Configuration section of the Test Bench
pane.

MATLAB Editor Supports VHDL and Verilog Syntax
Highlighting
The MATLAB Editor now supports syntax highlighting for VHDL and Verilog
code. See “Highlighting Syntax to Help Ensure Correct Entries” in the
MATLAB documentation for further information on syntax highlighting.

Hyperlinked Requirements Comments Included in
HTML Code Generation Reports
The coder now renders requirements comments as hyperlinked comments
within generated HTML code generation reports. See “Requirements
Comments and Hyperlinks” in the Simulink HDL Coder documentation for
further information.

HTML Code Generation Report from Root-Level Model
Supported
In previous releases, the coder did not support generation of HTML code
generation reports from the root-level model. R2009b removes this restriction.
You can now generate reports for the root-level model as well as for
subsystems, blocks, Stateflow charts, or Embedded MATLAB blocks.

44

Version 1.6 (R2009b) Simulink® HDL Coder™ Software

Generation of Simulink Model for Cosimulation of
Generated HDL Code
The coder now supports generation of a Simulink model configured for:

• Simulink simulation of your design

• Cosimulation of your design with an HDL simulator

The generated model includes a behavioral model of your design and a
corresponding HDL Cosimulation block, configured to cosimulate the design
using EDA Simulator Link™. You can generate an HDL Cosimulation block
for either of the following:

• EDA Simulator Link for use with Mentor GraphicsModelSim®

• EDA Simulator Link for use with Cadence Incisive®

See “Generating a Simulink Model for Cosimulation with an HDL Simulator”
for further information.

Additional Simulink Blocks Supported for HDL Code
Generation
The coder now supports the blocks listed in the following table for HDL code
generation.

Block Implementation

hdldemolib/HDL Streaming FFT hdldefaults.FFT

Ports & Subsystems/Trigger hdldefaults.TriggerPort

simulink/Discrete/Discrete FIR Filter hdldefaults.DiscreteFIRFilterHDLInstantiation

simulink/Lookup Tables/Direct Lookup Table
(n-D)

hdldefaults.DirectLookupTable

simulink/Lookup Tables/Lookup Table (n-D) hdldefaults.LookupTableND

simulink/Lookup Tables/Prelookup hdldefaults.PreLookup

45

Simulink® HDL Coder™ Release Notes

“Summary of Block Implementations” in the Simulink HDL Coder
documentation gives a complete listing of blocks that the coder supports for
HDL code generation.

New hdldemolib Block Supports Streaming FFT
The new hdldemolib/HDL Streaming FFT block supports a Radix-2 DIF
streaming FFT algorithm.

See “HDL Streaming FFT” in the Simulink HDL Coder documentation for
details.

Algebraic Loops Disallowed for HDL Code Generation
The coder now checks for algebraic loops during the compatibility checking
phase of the code generation process. If makehdl detects an algebraic loop
inside the DUT, the coder displays an error message and ends the code
generation process.

Compatibility Considerations
Restructure any of your models that contain algebraic loops such that
algebraic loops do not occur. It is also good practice to set the Algebraic
loop diagnostic in the Diagnostics pane of the Configuration Parameters
dialog box to error.

DUT Argument Required for checkhdl and makehdl
Commands
R2009b requires that calls to the following functions must specify the device
under test (DUT):

• checkhdl

• makehdl

When you call checkhdl or makehdl, specify the DUT as the initial argument
to these functions, as in the following example:

makehdl('sfir_fixed/symmetric_fir','TargetLanguage', 'Verilog');

46

Version 1.6 (R2009b) Simulink® HDL Coder™ Software

As in previous releases, you can specify the DUT in any of the following forms:

• bdroot: the current model.

• 'modelname': an explicitly specified model.

• 'modelname/subsys': explicitly specified path to a subsystem.

• gcb: the currently selected subsystem

This requirement avoids certain ambiguities that occurred in calls to
checkhdl or makehdl that did not pass in an explicit DUT argument.

In R2009b, the coder displays a warning if it encounters a call to checkhdl
or makehdl without the DUT argument. In future releases, the coder will
generate an error if it encounters a call to either of these functions without
the DUT argument.

See also the checkhdl and makehdl function reference pages in the Simulink
HDL Coder documentation.

Compatibility Considerations
If your MATLAB files contain any calls to checkhdl or makehdl that do not
specify the DUT, modify them to pass in the DUT as the initial argument.

AddClockEnablePort Implementation Parameter for
RAM Blocks Deprecated
The AddClockEnablePort implementation parameter for the Dual Port RAM
and Single Port RAM blocks is deprecated. The coder issues an error message
if it detects a reference to AddClockEnablePort in a control file.

Compatibility Considerations
If you use the AddClockEnablePort in a control file to suppress to generation
of a clock enable signal for RAM blocks:

• Remove all references to AddClockEnablePort from your control files.

• Use the generic RAM templates instead. The generic RAM templates
do not use a clock enable signal for RAM structures. The generic RAM

47

Simulink® HDL Coder™ Release Notes

template implements clock enable with logic in a wrapper around the RAM.
Consider the generic RAM style if

- Your synthesis tool does not support RAM structures with a clock enable

- Your synthesis tool cannot map generated HDL code to FPGA RAM
resources.

To learn how to use generic style RAM for your design, see the new Getting
Started with RAM and ROM in Simulink demo. To open the demo, type the
following command at the MATLAB prompt:

hdlcoderramrom

Additional Lookup Table Blocks Supported
The coder now supports the following lookup table (LUT) blocks for HDL
code generation:

• simulink/Lookup Tables/Lookup Table (n-D)

• simulink/Lookup Tables/Prelookup

• simulink/Lookup Tables/Direct Lookup Table (n-D)

Expanded LUT functionality supported for these blocks includes:

• Tables of two dimensions

• Prelookup

• Interpolation

• Extrapolation

See “Support for Lookup Table Blocks in HDL Code Generation” in the
Simulink HDL Coder documentation for details.

Discrete FIR Filter Supports Distributed Arithmetic
Architecture
The code now supports distributed arithmetic (DA) filter implementations for
the Discrete FIR Filter block. See “Distributed Arithmetic Implementation

48

Version 1.6 (R2009b) Simulink® HDL Coder™ Software

Parameters for Digital Filter Blocks” in the Simulink HDL Coder
documentation for details.

Generation of Multicycle Path Constraint Information
The coder now supports generation of a text file that reports multicycle path
constraint information. You can use this information with your synthesis tool.

To generate the file, select the Generate multicycle path information
option in the EDA Tool Scripts pane of the Configuration Parameters dialog
box. The following figure shows this option.

To generate a multicycle path constraint information file at the command line,
set the MulticyclePathInfo property as shown in the following example.

makehdl(gcb,'MulticyclePathInfo', 'on');

49

Simulink® HDL Coder™ Release Notes

See “Generating Multicycle Path Information Files” in the Simulink HDL
Coder documentation for detailed information.

Biquad Filter and Digital Filter Blocks Support
Complex Input Data and Coefficients
The Biquad Filter and Digital Filter blocks now support complex input data
and coefficients for all filter structures except decimators and interpolators.

Support for Adding or Removing HDL Configuration
Component
The HDL Coder submenu of the Tools menu now supports addition or
removal of the HDL Coder configuration component of a model. The following
figure shows the Remove HDL Configuration to Model option.

50

Version 1.6 (R2009b) Simulink® HDL Coder™ Software

See “Adding and Removing the HDL Configuration Component” Simulink
HDL Coder documentation for more information.

51

Simulink® HDL Coder™ Release Notes

Version 1.5 (R2009a) Simulink HDL Coder Software
This table summarizes what’s new in Version 1.5 (R2009a):

New Features and Changes Version Compatibility
Considerations

Fixed Bugs and Known
Problems

Yes
Details below

Yes—Details labeled
as Compatibility
Considerations, below.
See also Summary.

None

New features and changes introduced in this version are:

• “hdlsupported Library Reorganized” on page 53

• “HTML Code Generation Report” on page 53

• “Additional Simulink Blocks Supported for HDL Code Generation” on
page 56

• “Enabled Subsystems Supported for HDL Code Generation” on page 57

• “New Default HDL Implementations for Selected Blocks” on page 58

• “New HDL Implementations for Selected Blocks” on page 59

• “Distributed Arithmetic Implementations for the Digital Filter Block” on
page 60

• “Complex Data Supported for the Digital Filter Block” on page 60

• “Requirements Comments Included in Generated Code” on page 61

• “Restriction on fi and fimath Rounding Modes in Embedded MATLAB
Function Block Removed” on page 61

• “Restriction on for Loop Increment in Embedded MATLAB Function Block
Removed” on page 62

• “Generic RAM Template Supports RAM Without a Clock Enable Signal”
on page 62

• “Generating ROM with Lookup Table and Unit Delay Blocks” on page 63

52

Version 1.5 (R2009a) Simulink® HDL Coder™ Software

hdlsupported Library Reorganized
The hdlsupported.mdl block library has been reorganized into several
sublibraries to help you locate the HDL-compatible blocks you need more
easily. The following figure shows the top-level view of the hdlsupported.mdl
library.

The set of supported blocks will change in future releases of the coder. To
keep the hdlsupported.mdl current, you should rebuild the library each time
you install a new release. See “Supported Blocks Library” in the Simulink
HDL Coder documentation for further information.

HTML Code Generation Report
To help you navigate more easily between generated code and your source
model, the coder provides a traceability option that lets you generate reports
from either the GUI or the command line. When you enable traceability,
the coder creates and displays an HTML code generation report during the
code generation process. The following figure shows the top-level page of
a typical report.

53

Simulink® HDL Coder™ Release Notes

The report comprises several sections:

• The Summary section lists version and date information.

• The Generated Source Files table contains hyperlinks to that let you
view generated HDL code in a MATLAB Web browser window. This view
of the code includes hyperlinks that let you view the blocks or subsystems
from which the code was generated. You can click the names of source code

54

Version 1.5 (R2009a) Simulink® HDL Coder™ Software

files generated from your model to view their contents in a MATLAB Web
browser window. The report supports two types of linkage between the
model and generated code:

- Code-to-model hyperlinks within the displayed source code let you view
the blocks or subsystems from which the code was generated. Click on
the hyperlinks to view the relevant blocks or subsystems in a Simulink
model window.

- Model-to-code linkage lets you view the generated code for any block in
the model. To highlight a block’s generated code in the HTML report,
right-click the block and select HDL Coder > Navigate to Code from
the context menu.

• The Traceability Report allows you to account for Eliminated / Virtual
Blocks that are untraceable, versus the listed Traceable Simulink
Blocks / Stateflow Objects / Embedded MATLAB Scripts, providing a
complete mapping between model elements and code.

To enable generation of the HTML code generation report, select Generate
traceability report in the HDL Coder pane of the Configuration
Parameters dialog box, as shown in the following figure.

55

Simulink® HDL Coder™ Release Notes

See “Creating and Using Code Generation Reports” in the Simulink HDL
Coder documentation for further information.

Additional Simulink Blocks Supported for HDL Code
Generation
The coder now supports the blocks listed in the following table for HDL code
generation.

56

Version 1.5 (R2009a) Simulink® HDL Coder™ Software

Block Implementation(s)

simulink/Additional Math & Discrete/
Additional Math: Increment -
Decrement/Decrement Real World

default

simulink/Additional Math & Discrete/
Additional Math: Increment -
Decrement/Increment Real World

default

simulink/Additional Math & Discrete/
Additional Math: Increment -
Decrement/Decrement Store Integer

default

simulink/Additional Math & Discrete/
Additional Math: Increment -
Decrement/Increment Store Integer

default

simulink/Discontinuties/Saturation Dynamic default

simulink/Math Operations/Reciprocal Sqrt default, SqrtFunction

RecipSqrtNewton

SqrtBitset

SqrtNewton

Signal Routing/Go To default

Signal Routing/From default

dsparch4/Biquad Filter default

Ports & Subsystems/Enable default

Enabled Subsystems Supported for HDL Code
Generation
The code now supports code generation for enabled subsystems, provided
that they are configured as described in “Code Generation for Enabled and
Triggered Subsystems” in the Simulink HDL Coder documentation.

57

Simulink® HDL Coder™ Release Notes

New Default HDL Implementations for Selected
Blocks
The default HDL implementations for certain blocks has been changed. The
following table lists these blocks, as well as their new default implementations
and previous default implementations. All listed implementation classes
belong to the package hdldefaults.

Block Default Implementation
Before R2009a

New Default
Implementation

simulink/Commonly Used
Blocks/Constant
simulink/Commonly Used
Blocks/Ground
dspsrcs4/DSP Constant

ConstantHDLEmission Constant

simulink/Commonly Used
Blocks/Demux

DemuxHDLEmission Demux

simulink/Commonly Used
Blocks/Mux

MuxHDLEmission Mux

simulink/Commonly Used
Blocks/Switch

SwitchHDLEmission SwitchRTW

simulink/Math
Operations/Complex to
Real-Imag

ComplexToRealImagHDLEmission ComplexToRealImag

simulink/Math
Operations/Real-Imag to
Complex

RealImagtoComplexHDLEmission RealImagtoComplex

See the Simulink HDL Coder documentation for a complete listing of blocks
that are currently supported for HDL code generation.

Compatibility Considerations
If your models use default HDL block implementations for the affected blocks,
the coder now defaults to the new implementations. The new implementations
are compatible with the previous implementations and will produce identical
results.

58

Version 1.5 (R2009a) Simulink® HDL Coder™ Software

The older implementations for the listed blocks will be supported for a limited
number of future releases. If your control files explicitly reference the previous
default implementation for any of the affected blocks, the coder will continue
to use the referenced implementation. You should consider removing or
changing such references in your control files to use the new implementations.

New HDL Implementations for Selected Blocks
A number of HDL block implementations have been changed. The following
table lists these blocks, as well as their new implementations and the earlier
implementations that they replace. All listed implementation classes belong
to the package hdldefaults.

Block Implementation
Before R2009a

New Implementation

simulink/Math
Operations/MinMax
dspstat3/Maximum
dspstat3/Minimum

MinMaxCascadeHDLEmission MinMaxCascade

simulink/Commonly Used
Blocks/Sum
simulink/Math Operations/Sum of
Elements

SumTreeHDLEmission SumTree

simulink/Commonly Used
Blocks/Product
simulink/Math
Operations/Product of Elements

ProductTreeHDLEmission ProductTree

simulink/Commonly Used
Blocks/Sum
simulink/Math Operations/Sum of
Elements

SumCascadeHDLEmission SumCascade

simulink/Commonly Used
Blocks/Product
simulink/Math
Operations/Product of Elements

ProductCascadeHDLEmission ProductCascade

59

Simulink® HDL Coder™ Release Notes

See the Simulink HDL Coder documentation for a complete listing of blocks
that are currently supported for HDL code generation.

Compatibility Considerations
The new implementations are compatible with the previous implementations
and will produce identical results.

The older implementations for the listed blocks will be supported for a limited
number of future releases. If your control files explicitly reference the
previous implementation for any of the affected blocks, the coder will continue
to use the referenced implementation. You should consider removing or
changing such references in your control files to use the new implementations.

Distributed Arithmetic Implementations for the Digital
Filter Block
Distributed Arithmetic (DA) is a widely used technique for implementing
sum-of-products computations without using multipliers. DA distributes
multiply and accumulate operations across shifters, lookup tables (LUTs) and
adders in such a way that conventional multipliers are not required. The
coder now supports DA implementations for the following FIR structures of
the Digital Filter block:

• dfilt.dffir

• dfilt.dfsymfir

• dfilt.dfasymdir

See “Block Implementation Parameters” in the Simulink HDL Coder
documentation for further information.

Complex Data Supported for the Digital Filter Block
The coder supports complex coefficients and complex input signals for fully
parallel FIR and CIC filter structures of the Digital Filter block. In many
cases, you can use complex data and complex coefficients in combination. The
following table shows the filter structures that support complex data and/or
coefficients, and the permitted combinations.

60

Version 1.5 (R2009a) Simulink® HDL Coder™ Software

Filter Structure Complex
Data

Complex
Coefficients

Both Complex
Data
and Coefficients

dfilt.dffir Y Y Y

dfilt.dfsymfir Y Y Y

dfilt.dfasymfir Y Y Y

dfilt.dffirt Y Y Y

mfilt.cicdecim Y N/A N/A

mfilt.cicinterp Y N/A N/A

mfilt.firdecim Y Y N

mfilt.firinterp Y Y N

See “Blocks That Support Complex Data” for further information on how the
coder supports use of complex data.

Requirements Comments Included in Generated Code
Requirements that you assign to Simulink blocks are now automatically
included as comments in generated code. See the Simulink® Verification and
Validation™ User’s Guide in the Simulink HDL Coder documentation for
further information on requirements comments.

Restriction on fi and fimath Rounding Modes in
Embedded MATLAB Function Block Removed
In previous releases, the coder did not support the convergent and round
modes for the fi and fimath functions in Embedded MATLAB Function
blocks.

This restriction has been removed; the coder now supports all fi and fimath
rounding modes.

See also “Generating HDL Code with the MATLAB Function Block” in the
Simulink HDL Coder documentation.

61

Simulink® HDL Coder™ Release Notes

Restriction on for Loop Increment in Embedded
MATLAB Function Block Removed
In previous releases, the use of for loops with an increment other than 1 in
an Embedded MATLAB Function Block was not supported for HDL code
generation.

This restriction has been removed. The coder now allows use of any increment
in a for loop in an Embedded MATLAB Function Block.

See also “Generating HDL Code with the MATLAB Function Block” in the
Simulink HDL Coder documentation.

Generic RAM Template Supports RAM Without a
Clock Enable Signal
The hdldemolib library provides three type of RAM blocks:

• Dual Port RAM

• Simple Dual Port RAM

• Single Port RAM

These blocks (see “RAM Blocks” in the Simulink HDL Coder documentation)
implement RAM structures using HDL templates that include a clock enable
signal.

However, some synthesis tools do not support RAM inference with a clock
enable. As an alternative, the coder now provides a generic style of HDL
templates that do not use a clock enable signal for the RAM structures. The
generic RAM template implements clock enable with logic in a wrapper
around the RAM.

You may want to use the generic RAM style if your synthesis tool does not
support RAM structures with a clock enable, and cannot map generated HDL
code to FPGA RAM resources. To learn how to use generic style RAM for your
design, see the new Getting Started with RAM and ROM in Simulink demo.
To open the demo, type the following command at the MATLAB prompt:

hdlcoderramrom

62

Version 1.5 (R2009a) Simulink® HDL Coder™ Software

Generating ROM with Lookup Table and Unit Delay
Blocks
Simulink HDL Coder does not provide a ROM block, but you can easily build
one using basic Simulink blocks. The new Getting Started with RAM and
ROM in Simulink demo includes an example in which a ROM is built using
a Lookup Table block and a Unit Delay block. To open the demo, type the
following command at the MATLAB prompt:

hdlcoderramrom

63

Simulink® HDL Coder™ Release Notes

Compatibility Summary for Simulink HDL Coder Software
This table summarizes new features and changes that might cause
incompatibilities when you upgrade from an earlier version, or when you
use files on multiple versions. Details are provided in the description of the
new feature or change.

Version (Release) New Features and Changes with
Version Compatibility Impact

Latest Version
V2.2 (R2011b)

None

V2.1 (R2011a) None

V2.0 (R2010b) See the Compatibility
Considerations subheading
for this new feature or change:

• “HDL Parameters Now Saved
to Model, Eliminating Need For
Control Files” on page 19

V1.7 (R2010a) See the Compatibility
Considerations subheading
for this new feature or change:

• “Simplified Syntax for
Specification of Block
Implementations in Control
Files” on page 34

64

Compatibility Summary for Simulink® HDL Coder™ Software

Version (Release) New Features and Changes with
Version Compatibility Impact

V1.6 (R2009b) See the Compatibility
Considerations subheading
for this new feature or change:

• “DUT Argument Required
for checkhdl and makehdl
Commands” on page 46

• “Algebraic Loops Disallowed for
HDL Code Generation” on page 46

• “AddClockEnablePort
Implementation Parameter
for RAM Blocks Deprecated” on
page 47

V1.5 (R2009a) See the Compatibility
Considerations subheading
for this new feature or change:

• “New Default HDL
Implementations for Selected
Blocks” on page 58

• “New HDL Implementations for
Selected Blocks” on page 59

65

	toc
	Summary by Version
	Using Release Notes
	What Is in the Release Notes
	New Features and Changes
	Version Compatibility Considerations
	Fixed Bugs and Known Problems
	Documentation on the MathWorks Web Site
	Version 2.2 (R2011b) Simulink HDL Coder Software
	Black Box Implementation Enables Specification of Library for Lo
	Option to Minimize Intermediate Signals in HDL Code
	Option to Exclude Time/Date Information in HDL File Header

	Version 2.1 (R2011a) Simulink HDL Coder Software
	Synchronous Multiclock Code Generation
	GUI Support for Scalarize Vector Ports Option for VHDL
	GUI Support for Balancing Delays
	Delay Balancing Support for Filter and High-Level Blockset Block
	Enhanced CORDIC Algorithm Support
	Enhanced Retiming Features
	Enhanced Resource Sharing
	Enhanced Resource Utilization Report
	Enhanced Synthesis Script Generation
	Generic Parameter Passing to Subsystems With BlackBox Interface
	HDL Workflow Advisor Integrated FPGA Development Workflow
	Viterbi Decoder Enhancements
	Support for From and Goto Blocks at Any Level in Model

	Version 2.0 (R2010b) Simulink HDL Coder Software
	HDL Parameters Now Saved to Model, Eliminating Need For Control
	Setting HDL Block Properties in the GUI
	Setting and Getting HDL Block and Model Properties Programatical
	Compatibility Considerations

	Additional Simulink Blocks Supported for HDL Code Generation
	Resource Streaming and Sharing Optimizations Conserve Chip Area
	Delay Balancing
	New Timing Controller Naming Convention Avoids Name Clashes
	Scalarized Ports Option for VHDL
	Pipelining Improvements for Filter Blocks
	Reusable Code Generation for Atomic Subsystems
	Resource Utilization and and Optimization Reports
	Limitation on Generated Verilog Black Box Interfaces Removed
	Model Blocks Within Enabled and Triggered Subsystems Supported
	InitializeBlockRAM Property Controls Generation of Initial Signa
	AddClockEnablePort Implementation Parameter for RAM Blocks Remov
	Do Not Use Floor Rounding Mode for Signed Integer Division

	Version 1.7 (R2010a) Simulink HDL Coder Software
	Simplified Syntax for Specification of Block Implementations in
	Compatibility Considerations

	HDL Workflow Advisor
	Additional Simulink Blocks Supported for HDL Code Generation
	CORDIC Algorithm Supported for Trigonometric Functions (sin, cos
	Option to Minimize Generation of Clock Enables
	VHDLArchitectureName Property Supports Specification of Architec
	VHDLLibraryName Property Supports Specification of Target Libra
	Output Pipelining Now Supported for Subsystems
	Distributed Pipelining Now Supported for Subsystems
	CSD and Factored CSD Optimizations for Constant Multiplications
	Enhanced Gain Block Support
	FIR Decimation Filter Supports Distributed Arithmetic Architectu
	Serial, Partly Serial and Cascade Serial Architectures Supported
	InstancePostfix Property Allows Specification of Extension to Po

	Version 1.6 (R2009b) Simulink HDL Coder Software
	Triggered Subsystems Support for HDL Code Generation
	Stateflow Events Support for HDL Code Generation
	Support for Global Oversampling Clock
	Test Bench GUI Reorganized
	MATLAB Editor Supports VHDL and Verilog Syntax Highlighting
	Hyperlinked Requirements Comments Included in HTML Code Generati
	HTML Code Generation Report from Root-Level Model Supported
	Generation of Simulink Model for Cosimulation of Generated HDL C
	Additional Simulink Blocks Supported for HDL Code Generation
	New hdldemolib Block Supports Streaming FFT
	Algebraic Loops Disallowed for HDL Code Generation
	Compatibility Considerations

	DUT Argument Required for checkhdl and makehdl Commands
	Compatibility Considerations

	AddClockEnablePort Implementation Parameter for RAM Blocks Depre
	Compatibility Considerations

	Additional Lookup Table Blocks Supported
	Discrete FIR Filter Supports Distributed Arithmetic Architecture
	Generation of Multicycle Path Constraint Information
	Biquad Filter and Digital Filter Blocks Support Complex Input Da
	Support for Adding or Removing HDL Configuration Component

	Version 1.5 (R2009a) Simulink HDL Coder Software
	hdlsupported Library Reorganized
	HTML Code Generation Report
	Additional Simulink Blocks Supported for HDL Code Generation
	Enabled Subsystems Supported for HDL Code Generation
	New Default HDL Implementations for Selected Blocks
	Compatibility Considerations

	New HDL Implementations for Selected Blocks
	Compatibility Considerations

	Distributed Arithmetic Implementations for the Digital Filter Bl
	Complex Data Supported for the Digital Filter Block
	Requirements Comments Included in Generated Code
	Restriction on fi and fimath Rounding Modes in Embedded MATLAB
	Restriction on for Loop Increment in Embedded MATLAB Function Bl
	Generic RAM Template Supports RAM Without a Clock Enable Signal
	Generating ROM with Lookup Table and Unit Delay Blocks

	Compatibility Summary for Simulink HDL Coder Software

